Mathematics (Oct 2024)

Analyzing the Influence of Telematics-Based Pricing Strategies on Traditional Rating Factors in Auto Insurance Rate Regulation

  • Shengkun Xie

DOI
https://doi.org/10.3390/math12193150
Journal volume & issue
Vol. 12, no. 19
p. 3150

Abstract

Read online

This study examines how telematics variables such as annual percentage driven, total miles driven, and driving patterns influence the distributional behaviour of conventional rating factors when incorporated into predictive models for capturing auto insurance risk in rate regulation. To effectively manage the complexity inherent in telematics data, we advocate for the adoption of non-negative sparse principal component analysis (NSPCA) as a structured approach for data dimensionality reduction. By emphasizing sparsity and non-negativity constraints, NSPCA enhances the interpretability and predictive power of models concerning both loss severity and claim counts. This methodological innovation aims to advance statistical analyses within insurance pricing frameworks, ensuring the robustness of predictive models and providing insights crucial for rate regulation strategies specific to the auto insurance sector. Results show that, to enhance auto insurance risk pricing models, it is essential to address data dimension reduction challenges when integrating telematics data variables. Our findings underscore that integrating telematics variables into predictive models maintains the integrity of risk relativity estimates associated with traditional policy variables.

Keywords