IEEE Access (Jan 2023)
Modeling and Simulation of Time Domain Reflectometry Signals on a Real Network for Use in Fault Classification and Location
Abstract
Today, the classification and location of faults in electrical networks remains a topic of great interest. Faults are a major issue, mainly due to the time spent to detect, locate, and repair the cause of the fault. To reduce time and associated costs, automatic fault classification and location is gaining great interest. State-of-the-art techniques to classify and locate faults are mainly based on line-impedance measurements or the detection of the traveling wave produced by the event caused by the fault itself. In contrast, this paper describes the methodology for creating a database and a model for a complex distribution network. Both objectives are covered under the paradigm of the time-domain pulse reflectometry (TDR) principle. By using this technique, large distances can be monitored on a line with a single device. Thus, in this way a database is shared and created from the results of simulations of a real and complex distribution network modeled in the PSCADTM software, which have been validated with measurements from an experimental test setup. Experimental validations have shown that the combination of the TDR technique with the modeling of a real network (including the real injector and the network coupling filter from the prototype) provides high-quality signals that are very similar and reliable to the real ones. In this sense, it is intended firstly that this model and its corresponding data will serve as a basis for further processing by any of the existing state-of-the-art techniques. And secondly, to become a valid alternative to the already well-known Test Feeders but adapted to work groups not used to the electrical world but to the environment of pure data processing.
Keywords