PLoS ONE (Jan 2023)
Seismic performance and bearing capacity calculation of cross shaped concrete columns with built-in T-shaped steel and steel tubes.
Abstract
Incorporating T-shaped steel and square steel tubes into a cross shaped concrete column can significantly improve the seismic performance of the cross shaped column. However, the experimental samples are limited, so ABAQUS finite element (FE) analysis method was adopted in this paper to study the seismic performance of this cross shaped column, calculate and verify three specimens in the existing reference. Based on the reliable model, parameter analysis was carried out (25 specimens in total). The results show that the established model has a high degree of coincidence in the hysteretic curve, skeleton curve and failure mode, and the error of ultimate bearing capacity and ductility is within 10%. The configuration of T-shaped steel and square steel tubes inside the cross column can meet the ductility requirements specified in the standard under high axial compression ratio. The ultimate bearing capacity of the cross shaped column increases with the increase of the thickness of the square steel tube, but the ductility deteriorates. The increase in steel tube size increases the strength of the concrete in the core area, and the seismic performance of the cross shaped column was improved. Increasing the thickness of the T-shaped steel flange can better improve the seismic performance of the cross shaped column compared to increasing the thickness of the T-shaped steel web plate. Increasing the height of the specimen will significantly reduce its seismic performance. When the shear span ratio is not greater than 4.1, the ductility can meet the standard requirements. The error of the formula for calculating the compression-bending bearing capacity proposed based on existing calculation methods is less than 5%.