Safety & Fire Technology (Jul 2024)

Mechanisms for Data Acquisition to Train Artificial Intelligence Models for Detecting Increased Susceptibility to Fire Situations by Using Internet of Things Devices and Satellite Systems

  • Dawid Jurczyński,
  • Paweł Buchwald

DOI
https://doi.org/10.12845/sft.63.1.2024.3
Journal volume & issue
Vol. 63, no. 1
pp. 34 – 43

Abstract

Read online

Aim: Exploration and developing mechanisms of advanced data acquisition necessary for training an artificial intelligence model capable of effectively detecting areas with increased susceptibility to fire situations. The study focuses on utilizing data from satellite missions and ground-based sensors, which provide both high-resolution imagery and precise data on temperature, humidity, and other environmental factors. By analysing these diverse data sources, the research aims to create a comprehensive and efficient model capable of early detection of potential fire hazards, which is crucial for prevention for fire-prone situations. Project and methods: It centres on a project that aims to enhance fire detection and management through the integration of artificial intelligence with data acquired from satellite systems and internet of things devices. The methodologies employed in this project involve a combination of advanced data acquisition, machine learning techniques, and the synthesis of diverse environmental data to train artificial intelligence models that can predict and detect fire incidents more effectively. Results: Significant advancements in fire detection and management have been demonstrated through the integration of artificial intelligence (AI) with satellite data and IoT: 1. Enhanced monitoring capabilities the use of satellite data systems enabled real-time monitoring of thermal anomalies and vegetation health, crucial for early detection and effective monitoring of wildfires. This real-time capability allowed for quicker responses and more informed decision-making in firefighting efforts. 2. Effective integration of data sources: the integration of satellite and surface data proved to be effective in enhancing the predictive capabilities of the fire management systems. This comprehensive approach allowed for a better understanding of fire dynamics and contributed to more accurate and timely predictions. Conclusions: It could be emphasize the significant benefits and future potential of integrating artificial intelligence with satellite and internet of things data for improving fire detection and management. The integration of satellite imagery and internet of things sensor data is essential for enhancing the predictive accuracy of artificial intelligence systems. This integration allows for a comprehensive assessment of fire risks, providing actionable intelligence that is critical for prevention for fire-prone situations. These conclusions underscore the transformative potential of artificial intelligence in enhancing fire management systems. Keywords: data acquisition, artificial intelligence, IoT, satellite data systems, fire management systems

Keywords