Entropy (Dec 2014)
The Effects of Spontaneous Random Activity on Information Transmission in an Auditory Brain Stem Neuron Model
Abstract
This paper presents the effects of spontaneous random activity on information transmission in an auditory brain stem neuron model. In computer simulations, the supra-threshold synaptic current stimuli ascending from auditory nerve fibers (ANFs) were modeled by a filtered inhomogeneous Poisson process modulated by sinusoidal functions at a frequency of 220–3520 Hz with regard to the human speech spectrum. The stochastic sodium and stochastic high- and low-threshold potassium channels were incorporated into a single compartment model of the soma in spherical bushy neurons, so as to realize threshold fluctuations or a variation of spike firing times. The results show that the information rates estimated from the entropy of inter-spike intervals of spike trains tend toward a convex function of the spontaneous rates when the intensity of sinusoidal functions decreases. Furthermore, the results show that a convex function of the spontaneous rates tends to disappear as the frequency of the sinusoidal function increases, such that the phase-locked response can be unobserved. It is concluded that this sort of stochastic resonance (SR) phenomenon, which depends on the spontaneous rates with supra-threshold stimuli, can better enhance information transmission in a smaller intensity of sinusoidal functions within the human speech spectrum, like the situation in which the regular SR can enhance weak signals.
Keywords