Energy Exploration & Exploitation (Jul 2020)

Power load forecasting in energy system based on improved extreme learning machine

  • Xu-Dong Chen,
  • Yang Hai-Yue,
  • Jhang-Shang Wun,
  • Chien-Hung Wu,
  • Ching-Hsin Wang,
  • Ling-Ling Li

DOI
https://doi.org/10.1177/0144598720903797
Journal volume & issue
Vol. 38

Abstract

Read online

Through the accurate prediction of power load, the start and stop of generating units in the power grid can be arranged economically and reasonably. The safety and stability of power grid operation can be maintained. First, chicken swarm optimizer based on nonlinear dynamic convergence factor (NCSO) optimizer is proposed based on chicken swarm optimizer (CSO) optimizer. In NCSO optimizer, nonlinear dynamic inertia weight and levy mutation strategy are introduced. Compared with CSO optimizer, the convergence speed and effect of NCSO optimizer are obviously improved. Second, the random parameters of extreme learning machine (ELM) model are optimized by NCSO optimizer, and NCSOELM model is established to predict the power load. Finally, the NCSO optimization extreme learning machine (NCSOELM) model is used to predict the power load, and compared with back propagation (BP), support vector machine (SVM) and CSO optimization extreme learning machine (CSOELM) model. The experimental results show that the fitting accuracy of NCSOELM model is high, and the determination coefficient r 2 is above 90%. And the root mean square error value of the NCSOELM model is 0.87, 0.41, and 0.25 smaller than the root mean square error values of the support vector machine, BP, and CSOELM models, respectively. Experiments show that the model proposed in this study has high fitting effect and low prediction error, which is of positive significance for the realization of economic and safe operation of energy system.