Advances in Multimedia (Jan 2015)
Coevolution of Artificial Agents Using Evolutionary Computation in Bargaining Game
Abstract
Analysis of bargaining game using evolutionary computation is essential issue in the field of game theory. This paper investigates the interaction and coevolutionary process among heterogeneous artificial agents using evolutionary computation (EC) in the bargaining game. In particular, the game performance with regard to payoff through the interaction and coevolution of agents is studied. We present three kinds of EC based agents (EC-agent) participating in the bargaining game: genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution (DE). The agents’ performance with regard to changing condition is compared. From the simulation results it is found that the PSO-agent is superior to the other agents.