Vaccines (Jun 2024)

Evolution of the Antigenic Landscape in Children and Young Adults with COVID-19 and MIS-C

  • Lorenza Bellusci,
  • Gabrielle Grubbs,
  • Shaimaa Sait,
  • Katherine W. Herbst,
  • Juan C. Salazar,
  • Surender Khurana,
  • The Connecticut Children’s COVID Collaborative

DOI
https://doi.org/10.3390/vaccines12060638
Journal volume & issue
Vol. 12, no. 6
p. 638

Abstract

Read online

There is minimal knowledge regarding the durability of neutralization capacity and level of binding antibody generated against the highly transmissible circulating Omicron subvariants following SARS-CoV-2 infection in children with acute COVID-19 and those diagnosed with multisystem inflammatory syndrome in children (MIS-C) in the absence of vaccination. In this study, SARS-CoV-2 neutralization titers against the ancestral strain (WA1) and Omicron sublineages were evaluated in unvaccinated children admitted for COVID-19 (n = 32) and MIS-C (n = 32) at the time of hospitalization (baseline) and at six to eight weeks post-discharge (follow-up) between 1 April 2020, and 1 September 2022. In addition, antibody binding to the spike receptor binding domain (RBD) from WA1, BA.1, BA.2.75, and BA.4/BA.5 was determined using surface plasmon resonance (SPR). At baseline, the children with MIS-C demonstrated two-fold to three-fold higher binding and neutralizing antibodies against ancestral WA1 compared to those with COVID-19. Importantly, in children with COVID-19, the virus neutralization titers against the Omicron subvariants at six to eight weeks post-discharge reached the same level as those with MIS-C had at baseline but were higher than titers at 6–8 weeks post-discharge for MIS-C cases. Cross-neutralization capacity against recently emerged Omicron BQ.1, BQ.1.1, and XBB.1 variants was very low in children with either COVID-19 or MIS-C at all time points. These findings about post-infection immunity in children with either COVID-19 or MIS-C suggest the need for vaccinations in children with prior COVID-19 or MIS-C to provide effective protection from emerging and circulating SARS-CoV-2 variants.

Keywords