Energies (Jan 2023)
Design and Experimental Investigation of a Self-Powered Fan Based on a Thermoelectric System
Abstract
Providing electricity for isolated areas or emergencies (snowstorms, earthquakes, hurricanes, etc.) is an important challenge. In this study, a prototype of a self-powered fan based on a thermoelectric system was built to enhance the heat dissipation of the thermoelectric generator (TEG) systems using household stoves as heat sources. To improve output performance of the system, a heat collector consisting of a heat-conducting flat plate and a heat sink with fan cooling was designed to integrate several thermoelectric modules (TEM). The effects of the fan operating conditions (airflow velocity), number of thermoelectric modules, electrical connection mode under different heat flux among the performance of the TEG system are studied. The data obtained showed a higher heat flux and lower flow velocity are required to realize self-sustained cooling of the system. The maximum electric power is more sensitive to the heat flux than the fan operation conditions. It is also observed that more modules provide a higher power output but lower efficiency. The maximum power of four modules in series is larger than that in parallel, and the difference between them increases with increasing heat flux of the heat collector. In the case of self-sufficiency: the maximum output power and maximum net power with four thermoelectric modules are 10.92 W and 5.26 W, respectively, at a heat flux of 30,000 W/m2. Additionally, the maximum conversion efficiency of 1.8% is achieved for two modules at a heat flux of 14,000 W/m2, providing an effective strategy for the installation of TEMs and cooling fans in TEG.
Keywords