Case Studies in Thermal Engineering (Jan 2024)
Thermal error modeling of servo axis based on optimized LSSVM with gray wolf optimizer algorithm
Abstract
Thermal error of a CNC machine tool has a serious effect on its machining accuracy. In order to reduce the thermal error, establishing an accurate and robust thermal error model is necessary. A new data-driven thermal error model is proposed based on gray wolf optimizer (GWO) and least squares support vector machine (LSSVM). While, three temperature-sensitivity points (TSPs) were picked by grouping search method. With optimizing the hyperparameters γ and σ2 by GWO algorithm, LSSVM is applied to thermal error modeling, which has advantages in dealing with small samples and nonlinear data. The experiments were conducted, and the results showed that the error prediction model constructed by GWO-LSSVM achieved an accuracy of 94.39 % meeting the requirements for error compensation. Then, the stability of the proposed error model is verified. Finally, the LSSVM model is compared with MLR and BP models commonly used in error modeling, and the advantages and applicable occasions are analyzed through experiments.