Materials (Nov 2021)
A Numerical Investigation into the Effect of Homogeneity on the Time-Dependent Behavior of Brittle Rock
Abstract
To investigate the brittle creep failure process of rock material, the time-dependent properties of brittle rocks under the impact of homogeneity are analyzed by the numerical simulation method, RFPA-Creep (2D). Deformation is more palpable for more homogeneous rock material under the uniaxial creep loading condition. At a low stress level, diffusion creep may occur and transition to dislocation creep with increasing applied stress. The law for increasing creep strain with the homogeneity index under a constant confined condition is similar to the uniaxial case, and dislocation creep tends to happen with increasing confining pressure for the same homogeneity index. The dilatancy index reaches its maximum at a high stress level when rock approaches failure, and the evolution of the dilatancy index with the homogeneity index under the same confining pressure is similar to the uniaxial case and is more marked than that under the unconfined condition. Both uniaxial and triaxial creep failure originate from the ductile damage accumulation inside rock. The dominant shear-type failure is exhibited by uniaxial creep and the conventional compression case presents the splitting-based failure mode. Under confining pressure, the creep failure pattern is prone to shear, which is more notable for the rock with higher homogeneity.
Keywords