Journal of Integrative Agriculture (Jun 2022)

A rapid multiplication system for ‘Candidatus Liberibacter asiaticus’ through regeneration of axillary buds in vitro

  • Tian-gang LEI,
  • Yong-rui HE,
  • Xiu-ping ZOU,
  • Xue-feng WANG,
  • Shi-min FU,
  • Ai-hong PENG,
  • Lan-zhen XU,
  • Li-xiao YAO,
  • Shan-chun CHEN,
  • Chang-yong ZHOU

Journal volume & issue
Vol. 21, no. 6
pp. 1683 – 1693

Abstract

Read online

‘Candidatus Liberibacter asiaticus (CLas)’, which causes citrus Huanglongbing (HLB) disease, has not been successfully cultured in vitro to date. Here, a rapid multiplication system for CLas was established through in vitro regeneration of axillary buds from CLas-infected ‘Changyecheng’ sweet orange (Citrus sinensis Osbeck). Stem segments with a single axillary bud were cultured in vitro to allow CLas to multiply in the regenerating axillary buds. A high CLas titer was detected in the regenerated shoots on an optimized medium at 30 days after germination (DAG). This titer was 28.2-fold higher than in the midribs from CLas-infected trees growing in the greenhouse. To minimize contamination during in vitro regeneration, CLas-infected axillary buds were micrografted onto seedlings of ‘Changyecheng’ sweet orange and cultured in a liquid medium. In this culture, the titers of CLas in regenerated shoots rapidly increased from 7.5×104 to 1.4×108 cells μg–1 of citrus DNA during the first 40 DAG. The percentages of shoots with >1×108 CLas cells μg–1 DNA were 30 and 40% at 30 and 40 DAG, respectively. Direct tissue blot immunoassay (DTBIA) indicated that the distribution of CLas was much more uniform in regenerated plantlets than in CLas-infected trees growing in the greenhouse. The disease symptoms in the plantlets were die-back, stunted growth, leaf necrosis/yellowing, and defoliation. The death rate of the plantlets was 82.0% at 60 DAG. Our results show that CLas can effectively multiply in citrus plantlests in vitro. This method will be useful for studying plant-HLB interactions and for rapid screening of therapeutic compounds against CLas in citrus.

Keywords