Advances in Radiation Oncology (Jan 2017)

Independent test of a model to predict severe acute esophagitis

  • Ellen X. Huang, PhD,
  • Clifford G. Robinson, MD,
  • Alerson Molotievschi, MD,
  • Jeffrey D. Bradley, MD,
  • Joseph O. Deasy, PhD,
  • Jung Hun Oh, PhD

DOI
https://doi.org/10.1016/j.adro.2016.11.003
Journal volume & issue
Vol. 2, no. 1
pp. 37 – 43

Abstract

Read online

Purpose: Treatment planning factors are known to affect the risk of severe acute esophagitis during thoracic radiation therapy. We tested a previously published model to predict the risk of severe acute esophagitis on an independent data set. Methods and materials: The data set consists of data from patients who had recoverable treatment plans and received definitive radiation therapy for non–small cell carcinoma of the lung at a single institution between November 2004 and January 2010. Complete esophagus dose-volume and available clinical information was extracted using our in-house software. The previously published model was a logistic function with a combination of mean esophageal dose and use of concurrent chemotherapy. In addition to testing the previous model, we used a novel, machine learning-based method to build a maximally predictive model. Results: Ninety-four patients (81.7%) developed Common Terminology Criteria for Adverse Events, Version 4, Grade 2 or more severe esophagitis (Grade 2: n = 79 and Grade 3: n = 15). Univariate analysis revealed that the most statistically significant dose-volume parameters included percentage of esophagus volume receiving ≥40 to 60 Gy, minimum dose to the highest 20% of esophagus volume (D20) to D35, and mean dose. Other significant predictors included concurrent chemotherapy and patient age. The previously published model predicted risk effectively with a Spearman's rank correlation coefficient (rs) of 0.43 (P < .001) with good calibration (Hosmer-Lemeshow goodness of fit: P = .537). A new model that was built from the current data set found the same variables, yielding an rs of 0.43 (P < .001) with a logistic function of 0.0853 × mean esophageal dose [Gy] + 1.49 × concurrent chemotherapy [1/0] − 1.75 and Hosmer-Lemeshow P = .659. A novel preconditioned least absolute shrinkage and selection operator method yielded an average rs of 0.38 on 100 bootstrapped data sets. Conclusions: The previously published model was validated on an independent data set and determined to be nearly as predictive as the best possible two-parameter logistic model even though it overpredicted risk systematically. A novel, machine learning-based model using a bootstrapping approach showed reasonable predictive power.