PeerJ (May 2024)

EvatCrop: a novel hybrid quasi-fuzzy artificial neural network (ANN) model for estimation of reference evapotranspiration

  • Gouravmoy Banerjee,
  • Uditendu Sarkar,
  • Sanway Sarkar,
  • Indrajit Ghosh

DOI
https://doi.org/10.7717/peerj.17437
Journal volume & issue
Vol. 12
p. e17437

Abstract

Read online Read online

Reference evapotranspiration (ET0 ) is a significant parameter for efficient irrigation scheduling and groundwater conservation. Different machine learning models have been designed for ET0 estimation for specific combinations of available meteorological parameters. However, no single model has been suggested so far that can handle diverse combinations of available meteorological parameters for the estimation of ET0. This article suggests a novel architecture of an improved hybrid quasi-fuzzy artificial neural network (ANN) model (EvatCrop) for this purpose. EvatCrop yielded superior results when compared with the other three popular models, decision trees, artificial neural networks, and adaptive neuro-fuzzy inference systems, irrespective of study locations and the combinations of input parameters. For real-field case studies, it was applied in the groundwater-stressed area of the Terai agro-climatic region of North Bengal, India, and trained and tested with the daily meteorological data available from the National Centres for Environmental Prediction from 2000 to 2014. The precision of the model was compared with the standard Penman-Monteith model (FAO56PM). Empirical results depicted that the model performances remarkably varied under different data-limited situations. When the complete set of input parameters was available, EvatCrop resulted in the best values of coefficient of determination (R2 = 0.988), degree of agreement (d = 0.997), root mean square error (RMSE = 0.183), and root mean square relative error (RMSRE = 0.034).

Keywords