Metabolites (Aug 2022)
Predicting Hypertension Subtypes with Machine Learning Using Targeted Metabolites and Their Ratios
- Smarti Reel,
- Parminder S. Reel,
- Zoran Erlic,
- Laurence Amar,
- Alessio Pecori,
- Casper K. Larsen,
- Martina Tetti,
- Christina Pamporaki,
- Cornelia Prehn,
- Jerzy Adamski,
- Aleksander Prejbisz,
- Filippo Ceccato,
- Carla Scaroni,
- Matthias Kroiss,
- Michael C. Dennedy,
- Jaap Deinum,
- Graeme Eisenhofer,
- Katharina Langton,
- Paolo Mulatero,
- Martin Reincke,
- Gian Paolo Rossi,
- Livia Lenzini,
- Eleanor Davies,
- Anne-Paule Gimenez-Roqueplo,
- Guillaume Assié,
- Anne Blanchard,
- Maria-Christina Zennaro,
- Felix Beuschlein,
- Emily R. Jefferson
Affiliations
- Smarti Reel
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee DD2 4BF, UK
- Parminder S. Reel
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee DD2 4BF, UK
- Zoran Erlic
- Diabetologie und Klinische Ernährung, Klinik für Endokrinologie, UniversitätsSpital Zürich (USZ) und Universität Zürich (UZH), CH-8091 Zurich, Switzerland
- Laurence Amar
- Université Paris Cité, INSERM, PARCC, F-75015 Paris, France
- Alessio Pecori
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, 10124 Torino, Italy
- Casper K. Larsen
- Université Paris Cité, INSERM, PARCC, F-75015 Paris, France
- Martina Tetti
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, 10124 Torino, Italy
- Christina Pamporaki
- Department of Medicine III, Universitätsklinikum Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany
- Cornelia Prehn
- Metabolomics and Proteomics Core (MPC), Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Aleksander Prejbisz
- Department of Hypertension, National Institute of Cardiology, 04-628 Warsaw, Poland
- Filippo Ceccato
- UOC Endocrinologia, Dipartimento di Medicina DIMED, Azienda Ospedaliera-Università di Padova, 35128 Padua, Italy
- Carla Scaroni
- UOC Endocrinologia, Dipartimento di Medicina DIMED, Azienda Ospedaliera-Università di Padova, 35128 Padua, Italy
- Matthias Kroiss
- Clinical Chemistry and Laboratory Medicine, Core Unit Clinical Mass Spectrometry, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
- Michael C. Dennedy
- The Discipline of Pharmacology and Therapeutics, School of Medicine, National University of Ireland 33 Galway, H91 TK33 Galway, Ireland
- Jaap Deinum
- Department of Medicine, Section of Vascular Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Graeme Eisenhofer
- Department of Medicine III and Institute of Clinical Chemistry and Laboratory Medicine, Universitätsklinikum Carl Gustav Carus, 01307 Dresden, Germany
- Katharina Langton
- Department of Medicine III and Institute of Clinical Chemistry and Laboratory Medicine, Universitätsklinikum Carl Gustav Carus, 01307 Dresden, Germany
- Paolo Mulatero
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, 10124 Torino, Italy
- Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, 80336 Munich, Germany
- Gian Paolo Rossi
- Internal & Emergency Medicine, ESH Specialized Hypertension Center, Department of Medicine-DIMED, University of Padua, 35128 Padua, Italy
- Livia Lenzini
- Internal & Emergency Medicine, ESH Specialized Hypertension Center, Department of Medicine-DIMED, University of Padua, 35128 Padua, Italy
- Eleanor Davies
- Institute of Cardiovascular & Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK
- Anne-Paule Gimenez-Roqueplo
- Université Paris Cité, INSERM, PARCC, F-75015 Paris, France
- Guillaume Assié
- Institut Cochin, Université de Paris, INSERM, CNRS, F-75014 Paris, France
- Anne Blanchard
- Centre d’Investigations Cliniques 9201, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015 Paris, France
- Maria-Christina Zennaro
- Université Paris Cité, INSERM, PARCC, F-75015 Paris, France
- Felix Beuschlein
- Diabetologie und Klinische Ernährung, Klinik für Endokrinologie, UniversitätsSpital Zürich (USZ) und Universität Zürich (UZH), CH-8091 Zurich, Switzerland
- Emily R. Jefferson
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee DD2 4BF, UK
- DOI
- https://doi.org/10.3390/metabo12080755
- Journal volume & issue
-
Vol. 12,
no. 8
p. 755
Abstract
Hypertension is a major global health problem with high prevalence and complex associated health risks. Primary hypertension (PHT) is most common and the reasons behind primary hypertension are largely unknown. Endocrine hypertension (EHT) is another complex form of hypertension with an estimated prevalence varying from 3 to 20% depending on the population studied. It occurs due to underlying conditions associated with hormonal excess mainly related to adrenal tumours and sub-categorised: primary aldosteronism (PA), Cushing’s syndrome (CS), pheochromocytoma or functional paraganglioma (PPGL). Endocrine hypertension is often misdiagnosed as primary hypertension, causing delays in treatment for the underlying condition, reduced quality of life, and costly antihypertensive treatment that is often ineffective. This study systematically used targeted metabolomics and high-throughput machine learning methods to predict the key biomarkers in classifying and distinguishing the various subtypes of endocrine and primary hypertension. The trained models successfully classified CS from PHT and EHT from PHT with 92% specificity on the test set. The most prominent targeted metabolites and metabolite ratios for hypertension identification for different disease comparisons were C18:1, C18:2, and Orn/Arg. Sex was identified as an important feature in CS vs. PHT classification.
Keywords
- metabolomics
- machine learning
- hypertension
- primary aldosteronism
- pheochromocytoma/paraganglioma
- Cushing syndrome