Resources (Jan 2023)

Warming Air Temperature Impacts Snowfall Patterns and Increases Cold-Season Baseflow in the Liwiec River Basin (Poland) of the Central European Lowland

  • Urszula Somorowska

DOI
https://doi.org/10.3390/resources12020018
Journal volume & issue
Vol. 12, no. 2
p. 18

Abstract

Read online

The rapidly changing climate affects vulnerable water resources, which makes it important to evaluate multi-year trends in hydroclimatic characteristics. In this study, the changes in cold-season temperature (November–April) were analyzed in the period of 1951–2021 to reveal their impacts on precipitation and streamflow components in the Liwiec River basin (Poland). The temperature threshold approach was applied to reconstruct the snowfall/rainfall patterns. The Wittenberg filter method was applied to the hydrograph separation. The Mann–Kendall test and Sen’s slope were applied to estimate the significance and magnitude of the trends. An assessment of the similarity between trends in temperature and hydroclimatic variables was conducted using the Spearman rank-order correlation. The shift-type changes in river regime were assessed via the Kruskal–Wallis test. The results revealed that temporal changes in both snowfall, rainfall, and baseflow metrics were significantly associated with increasing temperature. Over 71 years, the temperature rose by ~2.70 °C, the snowfall-to-precipitation ratio decreased by ~16%, the baseflow increased with a depth of ~17 mm, and the baseflow index rose by ~18%. The river regime shifted from the snow-dominated to the snow-affected type. Overall, this study provides evidence of a gradual temperature increase over the last seven decades that is affecting the precipitation phase and streamflow component partitioning in the middle-latitude region.

Keywords