Remote Sensing (May 2020)
A Hierarchical Clustering Method for Land Cover Change Detection and Identification
Abstract
A method to detect abrupt land cover changes using hierarchical clustering of multi-temporal satellite imagery was developed. The Autochange method outputs the pre-change land cover class, the change magnitude, and the change type. Pre-change land cover information is transferred to post-change imagery based on classes derived by unsupervised clustering, enabling using data from different instruments for pre- and post-change. The change magnitude and change types are computed by unsupervised clustering of the post-change image within each cluster, and by comparing the mean intensity values of the lower level clusters with their parent cluster means. A computational approach to determine the change magnitude threshold for the abrupt change was developed. The method was demonstrated with three summer image pairs Sentinel-2/Sentinel-2, Landsat 8/Sentinel-2, and Sentinel-2/ALOS 2 PALSAR in a study area of 12,372 km2 in southern Finland for the detection of forest clear cuts and tested with independent data. The Sentinel-2 classification produced an omission error of 5.6% for the cut class and 0.4% for the uncut class. Commission errors were 4.9% for the cut class and 0.4% for the uncut class. For the Landsat 8/Sentinel-2 classifications the equivalent figures were 20.8%, 0.2%, 3.4%, and 1.6% and for the Sentinel-2/ALOS PALSAR classification 16.7%, 1.4%, 17.8%, and 1.3%, respectively. The Autochange algorithm and its software implementation was considered applicable for the mapping of abrupt land cover changes using multi-temporal satellite data. It allowed mixing of images even from the optical and synthetic aperture radar (SAR) sensors in the same change analysis.
Keywords