Energies (Sep 2021)
A Time-Dependent Model for Predicting Thermal Environment of Mono-Slope Solar Greenhouses in Cold Regions
Abstract
Most greenhouses in the Canadian Prairies shut down during the coldest months (November to February) because of the hefty heating cost. Chinese mono-slope solar greenhouses do not primarily rely on supplemental heating; instead, they mostly rely on solar energy to maintain the required indoor temperature in winter. This study focuses on improving an existing thermal model, entitled RGWSRHJ, for Chinese-style solar greenhouses (CSGs) to increase the robustness of the model for simulating the thermal environment of the CSGs located outside of China. The modified model, entitled SOGREEN, was validated using the field data collected from a CSG in Manitoba, Canada. The results indicate that the average prediction error for indoor and relative humidity is 1.9 °C and 7.0%, and the rRMSE value is 3.3% and 11.5%, respectively. The average error for predicting the north wall and ground surface temperature is 4.2 °C and 2.3 °C, respectively. The study also conducted a case study to analyze the thermal performance of a conceptual CSG in Saskatoon, Canada. The energy analysis indicates the heating requirement of the greenhouse highly depends on the availability of solar radiation. Besides winter, the heating requirement is relatively low in March to maintain 18 °C indoor temperature when the average outdoor temperature was below –4 °C, and negligible during May–August. The results indicate that vegetable production in CSGs could save about 55% on annual heating than traditional greenhouses. Hence, CSGs could be an energy-efficient solution for ensuring food security for northern communities in Canada and other cold regions.
Keywords