Shock and Vibration (Jan 2015)

Classical Flutter and Active Control of Wind Turbine Blade Based on Piezoelectric Actuation

  • Tingrui Liu

DOI
https://doi.org/10.1155/2015/292368
Journal volume & issue
Vol. 2015

Abstract

Read online

The aim of this article is to analyze classical flutter and active control of single-cell thin-walled composite wind turbine blade beam based on piezoelectric actuation. Effects of piezoelectric actuation for classical flutter suppression on wind turbine blade beam subjected to combined transverse shear deformation, warping restraint effect, and secondary warping are investigated. The extended Hamilton’s principle is used to set up the equations of motion, and the Galerkin method is applied to reduce the aeroelastic coupled equations into a state-space form. Active control is developed to enhance the vibrational behavior and dynamic response to classical aerodynamic excitation and stabilize structures that might be damaged in the absence of control. Active optimal control scheme based on linear quadratic Gaussian (LQG) controller is implemented. The research provides a way for rare study of classical flutter suppression and active control of wind turbine blade based on piezoelectric actuation.