The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (Dec 2023)

A FULLY CONNECTED CHANGE DETECTION METHOD OF SAR IMAGES FUSING ORIGINAL IMAGE FEATURES AND CHANGE DETECTION RESULTS

  • Z. Sun,
  • F. Duan,
  • F. Duan,
  • H. Guan,
  • H. Guan,
  • F. Yang,
  • Y. Wang,
  • W. Zhao

DOI
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1271-2023
Journal volume & issue
Vol. XLVIII-1-W2-2023
pp. 1271 – 1280

Abstract

Read online

The primary strategy to eliminate the effect of scatter noise in synthetic aperture radar (SAR) imagery is usually through filtering or combining neighborhood information. However, both approaches to reducing noise reduce the detection accuracy of change edges with similar characteristics to scatter noise points. Considering the above problems, this letter proposes a post-processing method that applies a fully connected conditional random field theoretical model to fuse the original image information with the initial change detection results. The method first takes the original image information and the initial change detection results as a priori conditions. Secondly, the global spatial information in the original image and the label values in the initial change detection results are fully considered when detecting the changed and unchanged pixels to establish a fully connected relationship between all the pixels and find the label distribution probability of each pixel under the condition of noise suppression, and finally obtain better change detection results. The experimental results on the real SAR dataset confirm the proposed method's effectiveness, robustness, and efficiency.