MATEC Web of Conferences (Jan 2016)

Effects of Straight and Serpentine Flow Field Designs on Temperature Distribution in Proton Exchange Membrane (PEM) Fuel Cell

  • Zaman Izzuddin,
  • Manshoor Bukhari,
  • Khalid Amir,
  • Mohamad Sterand Laily Azwati,
  • Wei Chan Shiau

DOI
https://doi.org/10.1051/matecconf/20167801116
Journal volume & issue
Vol. 78
p. 01116

Abstract

Read online

Proton exchange membrane fuel cells or sometimes called as polymer electrolyte membrane (PEM) fuel cells is a device for energy transformation in a changing process from one form of energy to another form of energy. It became as an alternative especially for future use in stationary and vehicular applications. PEM fuel cells provide high efficiency and power density with null emission, low operating temperature, quickly start and long life. One of the aspects that are crucial in optimizing the PEM fuel cells performance is a flow field geometry. In this paper, a simulation case of PEM fuel cells was simulated to determine effects of a straight and serpentine flow field on temperature distribution in PEM fuel cells. ANSYS Fluent software was used to simulate 3-dimensional models of single PEM fuel cells in order to determine the effects of changes in the geometry flow field on temperature distributions. Results showed that the serpentine flow field design produces a better temperature distribution along the membrane. The simulation result shows a good agreement with the experiment, thus boost a higher confidence in the results to determine the effectiveness of the flow field design in PEM fuel cells.