Nature Communications (Apr 2024)
Landslide hazard cascades can trigger earthquakes
Abstract
Abstract While earthquakes are well-known to trigger surface hazards and initiate hazard cascades, whether surface hazards can instead trigger earthquakes remains underexplored. In 2018, two landslides on the Tibetan plateau created landslide-dammed lakes which subsequently breached and caused catastrophic outburst floods. Here we build an earthquake catalog using machine-learning and cross-correlation-based methods which shows there was a statistically significant increase in earthquake activity (local magnitude ≤ 2.6) as the landslide-dammed lake approached peak water level which returned to the background level after dam breach. We further find that ~90% of the seismicity occurred where Coulomb stress increased due to the combined effect of direct loading and pore pressure diffusion. The close spatial and temporal correlation between the calculated Coulomb stress increase and earthquake activity suggests that the earthquakes were triggered by these landslide hazard cascades. Finally, our Coulomb stress modeling considering the properties of landslide-dammed lakes and reservoir-induced earthquakes globally suggests that earthquake triggering by landslide-dammed lakes and similar structures may be a ubiquitous phenomenon. Therefore, we propose that earthquake-surface hazard interaction can include bidirectional triggering which should be properly accounted for during geological hazard assessment and management in mountainous regions.