Journal of Enzyme Inhibition and Medicinal Chemistry (Dec 2024)
Novel alloxazine analogues: design, synthesis, and antitumour efficacy enhanced by kinase screening, molecular docking, and ADME studies
Abstract
This study describes the development of novel alloxazine analogues as potent antitumor agents with enhanced selectivity for tumour cells. Twenty-nine out of 45 newly compounds were investigated in vitro for their growth inhibitory activities, against two human tumour cell lines, namely, the human T-cell acute lymphoblastoid leukaemia cell line (CCRF-HSB-2) and human oral epidermoid carcinoma cell line (KB), and the antitumor agent “Ara-C” was used as a positive reference in this investigation. Compounds 9e and 10J were the highest among their analogues, against both tumour cell lines (CCRF-HSB-2 and KB). Correlation analyses demonstrated a strong relationship between the IC50 values and AutoDock binding free energy or calculated inhibition (Ki). The study delves into structure–activity relationships (SARs) through advanced modelling tools integrated with structure-based drug design (SBDD) using GOLD 5.2.2, AutoDock 4.2, and Accelrys Discovery Studio 3.5. Physicochemical properties, pharmacokinetics, drug-likeness, and toxicity predictions of the most potent alloxazine derivatives were conducted using ProTox-II and Swiss ADME for effective antitumor agents with improved selectivity.
Keywords