Heliyon (Apr 2023)

Removal of methylene blue using MnO2@rGO nanocomposite from textile wastewater: Isotherms, kinetics and thermodynamics studies

  • Tshimangadzo S. Munonde,
  • Azile Nqombolo,
  • Siphosethu Hobongwana,
  • Anele Mpupa,
  • Philiswa Nosizo Nomngongo

Journal volume & issue
Vol. 9, no. 4
p. e15502

Abstract

Read online

In this study, the adsorptive removal of methylene blue dye, which is commonly used in textile industries, was investigated using the MnO2@reduced graphene oxide (rGO) adsorbent. The sonication-assisted synthesis from rGO nanosheets and MnO2 nanoparticles resulted to the MnO2@rGO nanocomposite with improved physicochemical properties. The characterization results showed the improved surface area, porous structure and adsorption sites from the nitrogen adsorption-desorption studies, improved morphology from the Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) and the improved crystal structure from X-ray powder diffraction (XRD). The improved physicochemical properties on the MnO2@rGO nanocomposite played a significant role in enhancing the dye removal in textile wastewater. The equilibrium experimental data was best described by the Langmuir isotherm model with a maximum adsorption capacity of 156 mg g−1, suggesting a monolayer adsorption. The kinetic data best fitted the pseudo-second order kinetic model, suggesting a chemisorption adsorption process. The thermodynamic data (ΔG°, ΔH° and ΔS°) confirmed the feasibility, randomness and spontaneous nature of the adsorption process. The mechanism of adsorption involved the hydrogen bonding, π-π interactions and electrostatic interactions. The removal of methylene blue using MnO2@rGO nanocomposite in spiked textile wastewater yielded a 98–99% removal. The method demonstrated competitiveness when compared with literature reported results, paving way for further investigations towards industrial scale applications.

Keywords