JDS Communications (Mar 2024)

Milk production responses of dairy cows to fatty acid supplements with different ratios of palmitic and oleic acids in low- and high-fat basal diets

  • A.M. Bales,
  • J. de Souza,
  • A.L. Lock

Journal volume & issue
Vol. 5, no. 2
pp. 96 – 101

Abstract

Read online

Abstract:: We evaluated the effects of fatty acid (FA) supplements with different ratios of palmitic acid (C16:0) and oleic acid (cis-9 C18:1) in low- and high-FA basal diets on production responses of lactating dairy cows. Thirty-six multiparous Holstein cows (50.2 ± 5.8 kg/d of milk; 160 ± 36 d in milk) were used in a split-plot Latin square design balanced for carryover effects. Cows were blocked by milk yield and allocated to a main plot receiving either a low-FA (LF; 1.93% FA content) basal diet (n = 18) containing cottonseed meal and cottonseed hulls or a high-FA (HF; 3.15% FA content) basal diet (n = 18) containing whole cottonseed. Within each plot, a 3 × 3 Latin square arrangement of treatments was used in 3 consecutive 21-d periods. Treatments were (1) control (CON; no FA supplementation), (2) FA supplement containing 80% C16:0 + 10% C18:1 (PA), and (3) FA supplement containing 60% C16:0 + 30% cis-9 C18:1 (PA+OA). The FA supplements were fed at 1.5% of dry matter and replaced soyhulls in CON. Preplanned contrasts were (1) overall effect of FA supplementation {CON vs. the average of the FA treatments [1/2 (PA + PA+OA)]}, and (2) the effect of the PA treatment versus the PA+OA treatment (PA vs. PA+OA). Treatment by basal diet interactions were observed for yields of milk and lactose, where FA treatments increased yields of milk and milk lactose in LF but not in HF. Basal diet had no effect on dry matter intake (DMI) or milk yield. Compared with LF, HF increased milk fat yield and 3.5% fat-corrected milk (FCM) and tended to increase milk fat content and energy-corrected milk (ECM) yield. The FA treatments decreased DMI but increased the yields of milk fat, 3.5% FCM, and ECM, compared with CON, due to increases in mixed and preformed milk FA yields. The PA+OA treatment decreased DMI and milk protein yield compared with PA. In conclusion, a high-fat basal diet increased milk fat production, and the addition of FA supplements to a low-fat basal diet increased milk lactose yield and tended to increase milk yield. Additionally, regardless of basal diet fat level, FA supplements increased production responses compared with the non-FA-supplemented control diet.