مدیریت آب و آبیاری (Aug 2021)

کاربرد مدل ترکیبی شبکه عصبی مصنوعی و الگوریتم‌های بهینه‌سازی فرا ابتکاری در پیش‌بینی شاخص خشکسالی SPEI12

  • پوریا قاسمی,
  • مسعود کرباسی,
  • علیرضا زمانی نوری,
  • مهدی سرائی تبریزی

DOI
https://doi.org/10.22059/jwim.2021.318390.859
Journal volume & issue
Vol. 11, no. 2
pp. 173 – 188

Abstract

Read online

خشکسالی یکی از مهم‌ترین بلایای طبیعی می‌باشد که در همه‌ی رژیم‌های آب و هوایی رخ می‌دهد. بنابراین، پیش‌بینی و مقابله با آن از اهمیت بالایی برخوردار است. در پژوهش حاضر از سه الگوریتم‌های بهینه‌سازی هوشمند (الگوریتم بهینه‌سازی مبتنی بر آموزش و یادگیری (TLBO)، الگوریتم بهینه‌سازی علف‌های هرز (IWO)، الگوریتم ازدحام ذرات (PSO)) و الگوریتم متداول لونبرگ- مارکوات به‌منظور آموزش شبکه عصبی مصنوعی چند لایه، برای پیش‌بینی شاخص خشکسالی SPEI12 یک الی سه ماه آینده در 79 ایستگاه سینوپتیک کشور استفاده گردید. با توجه به تعداد زیاد ایستگاه‌های سینوپتیک، ایستگاه‌ها با توجه به سری‌های زمانی خشکسالی و با استفاده از روش K-means به پنج خوشه C1 تا C5 تقسیم شدند. نتایج با توجه به قرارگیری ایستگاه‌ها در خوشه‌ها مورد مقایسه قرار گرفتند و دقت مدل‌ها بر اساس آماره‌های RMSE) و (R2 داده‌های آزمون، مورد ارزیابی قرار گرفتند. نتایج به‌دست ‌آمده از این پژوهش نشان داد که در هر سه مدل پیش‌بینی با افزایش مقیاس زمانی پیش‌بینی دقت مدل‌ها کاهش یافته است. مقایسه بین سه الگوریتم بهینه‌سازی ذکر شده و الگوریتم لونبرگ- مارکوات به‌عنوان یک الگوریتم پرکاربرد در بهینه‌سازی وزن‌های شبکه عصبی، نشان‌دهنده برتری قابل توجه الگوریتم‌های بهینه‌سازی فراابتکاری است. مقایسه بین سه الگوریتم TLBO،IWO و PSO نشان داد که الگوریتم TLBO اندکی بهتر از سایر الگوریتم‌ها عمل می‌کند و نتایج دقیق‌تری را ارائه می‌کند. بهترین پیش‌بینی مدل‌های ذکر شده و بیشترین مقادیر R2 در خوشه یک (شرق، نوار جنوب و جنوب شرقی ایران) و بیشترین مقادیر RMSE و کمترین دقت مدل‌ها در خوشه پنج (نوار شمالی کشور) مشاهده شد.

Keywords