Opuscula Mathematica (Jan 2019)

Oscillation criteria for even order neutral difference equations

  • S. Selvarangam,
  • S. A. Rupadevi,
  • E. Thandapani,
  • S. Pinelas

DOI
https://doi.org/10.7494/OpMath.2019.39.1.91
Journal volume & issue
Vol. 39, no. 1
pp. 91 – 108

Abstract

Read online

In this paper, we present some new sufficient conditions for oscillation of even order nonlinear neutral difference equation of the form \[\Delta^m(x_n+ax_{n-\tau_1}+bx_{n+\tau_2})+p_nx_{n-\sigma_1}^{\alpha}+q_nx_{n+\sigma_2}^{\beta}=0,\quad n\geq n_0\gt0,\] where \(m\geq 2\) is an even integer, using arithmetic-geometric mean inequality. Examples are provided to illustrate the main results.

Keywords