Crystals (Aug 2018)
Analysis of Switching Current Data during Polarization Reversal in KTP Single Crystals with Surface Dielectric Layer
Abstract
Studies of polarization reversal processes in potassium titanyl phosphate (KTiOPO4, KTP) single crystals with surface dielectric layer are important due to their potential applications as the basis of bottom-up technology for creation of periodically poled nonlinear-optical crystals. We present the results of switching currents analysis accompanied by in situ visualization of domain kinetics during polarization reversal in KTP with 3 m-thick photoresist dielectric layer. Qualitative change of the switching current shape has been revealed as compared to the polarization reversal without surface dielectric layer. Two stages of domain structure evolution have been distinguished by in situ visualization of domain kinetics. The formation of submicron domain streamers in front of the moving domain walls has been revealed. The broadening of the domain streamers (1D domain growth) was observed at the second stage. The switching currents were approximated by the modified Kolmogorov-Avrami formula taking into account the change of the growth dimensionality (“geometrical catastrophe”). The sufficient input of the 1D growth to the switching process decreased with increase of the switching field. The obtained results were attributed to the domain wall shape instability induced by retardation of the depolarization field screening in ferroelectric with surface dielectric layer.
Keywords