Journal of Lipid Research (Jul 2024)

A simplified method for preventing postmortem alterations of brain prostanoids for true in situ level quantification

  • Derek Besch,
  • Drew R. Seeger,
  • Brennon Schofield,
  • Svetlana A. Golovko,
  • Meredith Parmer,
  • Mikhail Y. Golovko

Journal volume & issue
Vol. 65, no. 7
p. 100583

Abstract

Read online

Dramatic postmortem prostanoid (PG) enzymatic synthesis in the brain causes a significant artifact during PG analysis. Thus, enzyme deactivation is required for an accurate in situ endogenous PG quantification. To date, the only method for preventing postmortem brain PG increase with tissue structure preservation is fixation by head-focused microwave irradiation (MW), which is considered the gold standard method, allowing for rapid in situ heat-denaturation of enzymes. However, MW requires costly equipment that suffers in reproducibility, causing tissue loss and metabolite degradation if overheated. Our recent study indicates that PGs are not synthesized in the ischemic brain unless metabolically active tissue is exposed to atmospheric O2. Based on this finding, we proposed a simple and reproducible alternative method to prevent postmortem PG increase by slow enzyme denaturation before craniotomy. To test this approach, mice were decapitated directly into boiling saline. Brain temperature reached 100°C after ∼140 s during boiling, though 3 min boiling was required to completely prevent postmortem PG synthesis, but not free arachidonic acid release. To validate this fixation method, brain basal and lipopolysaccharide (LPS)-induced PG were analyzed in unfixed, MW, and boiled tissues. Basal and LPS-induced PG levels were not different between MW and boiled brains. However, unfixed tissue showed a significant postmortem increase in PG at basal conditions, with lesser differences upon LPS treatment compared to fixed tissue. These data indicate for the first time that boiling effectively prevents postmortem PG alterations, allowing for a reproducible, inexpensive, and conventionally accessible tissue fixation method for PG analysis.

Keywords