Plant Methods (Mar 2024)

Maximizing efficiency in sunflower breeding through historical data optimization

  • Javier Fernández-González,
  • Bertrand Haquin,
  • Eliette Combes,
  • Karine Bernard,
  • Alix Allard,
  • Julio Isidro y Sánchez

DOI
https://doi.org/10.1186/s13007-024-01151-0
Journal volume & issue
Vol. 20, no. 1
pp. 1 – 23

Abstract

Read online

Abstract Genomic selection (GS) has become an increasingly popular tool in plant breeding programs, propelled by declining genotyping costs, an increase in computational power, and rediscovery of the best linear unbiased prediction methodology over the past two decades. This development has led to an accumulation of extensive historical datasets with genotypic and phenotypic information, triggering the question of how to best utilize these datasets. Here, we investigate whether all available data or a subset should be used to calibrate GS models for across-year predictions in a 7-year dataset of a commercial hybrid sunflower breeding program. We employed a multi-objective optimization approach to determine the ideal years to include in the training set (TRS). Next, for a given combination of TRS years, we further optimized the TRS size and its genetic composition. We developed the Min_GRM size optimization method which consistently found the optimal TRS size, reducing dimensionality by 20% with an approximately 1% loss in predictive ability. Additionally, the Tails_GEGVs algorithm displayed potential, outperforming the use of all data by using just 60% of it for grain yield, a high-complexity, low-heritability trait. Moreover, maximizing the genetic diversity of the TRS resulted in a consistent predictive ability across the entire range of genotypic values in the test set. Interestingly, the Tails_GEGVs algorithm, due to its ability to leverage heterogeneity, enhanced predictive performance for key hybrids with extreme genotypic values. Our study provides new insights into the optimal utilization of historical data in plant breeding programs, resulting in improved GS model predictive ability.

Keywords