AIMS Mathematics (Jan 2024)

A bio-inspired weights and structure determination neural network for multiclass classification: Applications in occupational classification systems

  • Yu He ,
  • Xiaofan Dong ,
  • Theodore E. Simos ,
  • Spyridon D. Mourtas ,
  • Vasilios N. Katsikis,
  • Dimitris Lagios ,
  • Panagiotis Zervas,
  • Giannis Tzimas

DOI
https://doi.org/10.3934/math.2024119
Journal volume & issue
Vol. 9, no. 1
pp. 2411 – 2434

Abstract

Read online

Undoubtedly, one of the most common machine learning challenges is multiclass classification. In light of this, a novel bio-inspired neural network (NN) has been developed to address multiclass classification-related issues. Given that weights and structure determination (WASD) NNs have been acknowledged to alleviate the disadvantages of conventional back-propagation NNs, such as slow training pace and trapping in a local minimum, we developed a bio-inspired WASD algorithm for multiclass classification problems (BWASDC) by using the metaheuristic beetle antennae search (BAS) algorithm to enhance the WASD algorithm's learning process. The BWASDC's effectiveness is then evaluated through applications in occupational classification systems. It is important to mention that systems of occupational classification serve as a fundamental indicator of occupational exposure. For this reason, they are highly significant in social science research. According to the findings of four occupational classification experiments, the BWASDC model outperformed some of the most modern classification models obtainable through MATLAB's classification learner app on all fronts.

Keywords