Geoscientific Model Development (Oct 2021)

FORest Canopy Atmosphere Transfer (FORCAsT) 2.0: model updates and evaluation with observations at a mixed forest site

  • D. Wei,
  • H. D. Alwe,
  • D. B. Millet,
  • B. Bottorff,
  • M. Lew,
  • P. S. Stevens,
  • J. D. Shutter,
  • J. L. Cox,
  • F. N. Keutsch,
  • Q. Shi,
  • S. C. Kavassalis,
  • J. G. Murphy,
  • K. T. Vasquez,
  • H. M. Allen,
  • E. Praske,
  • J. D. Crounse,
  • P. O. Wennberg,
  • P. B. Shepson,
  • P. B. Shepson,
  • A. A. T. Bui,
  • H. W. Wallace,
  • R. J. Griffin,
  • N. W. May,
  • M. Connor,
  • J. H. Slade,
  • K. A. Pratt,
  • E. C. Wood,
  • M. Rollings,
  • M. Rollings,
  • B. L. Deming,
  • B. L. Deming,
  • D. C. Anderson,
  • D. C. Anderson,
  • A. L. Steiner

DOI
https://doi.org/10.5194/gmd-14-6309-2021
Journal volume & issue
Vol. 14
pp. 6309 – 6329

Abstract

Read online

The FORCAsT (FORest Canopy Atmosphere Transfer) model version 1.0 is updated to FORCAsT 2.0 by implementing five major changes, including (1) a change to the operator splitting, separating chemistry from emission and dry deposition, which reduces the run time of the gas-phase chemistry by 70 % and produces a more realistic in-canopy profile for isoprene; (2) a modification of the eddy diffusivity parameterization to produce greater and more realistic vertical mixing in the boundary layer, which ameliorates the unrealistic simulated end-of-day peaks in isoprene under well-mixed conditions and improves daytime air temperature; (3) updates to dry deposition velocities with available measurements; (4) implementation of the Reduced Caltech Isoprene Mechanism (RCIM) to reflect the current knowledge of isoprene oxidation; and (5) extension of the aerosol module to include isoprene-derived secondary organic aerosol (iSOA) formation. Along with the operator splitting, modified vertical mixing, and dry deposition, RCIM improves the estimation of first-generation isoprene oxidation products (methyl vinyl ketone and methacrolein) and some second-generation products (such as isoprene epoxydiols). Inclusion of isoprene in the aerosol module in FORCAsT 2.0 leads to a 7 % mass yield of iSOA. The most important iSOA precursors are IEPOX and tetrafunctionals, which together account for >86 % of total iSOA. The iSOA formed from organic nitrates is more important in the canopy, accounting for 11 % of the total iSOA. The tetrafunctionals compose up to 23 % of the total iSOA formation, highlighting the importance of the fate (i.e., dry deposition and gas-phase chemistry) of later-generation isoprene oxidation products in estimating iSOA formation.