E3S Web of Conferences (Jan 2021)
Removal of nitrate using modified pumice as adsorbent for reducing groundwater pollution
Abstract
Nitrate adsorption onto the physically and chemically modified pumice was investigated as an effort for reducing groundwater pollution. The treatments were heating at temperatures of 300°C, 450°C, and 600°C for physical and soaking in acid solutions (HCl, H2SO4, and HNO3) for chemical treatments. The adsorption was performed in a batch system at room temperature (25±1°C) with the optimum condition (pH 4; 0.3 g/L of adsorbent dose; <63 µm of adsorbent diameters and 30 minutes of contact time). The results indicated that the physically and chemically modified pumice resulted in increasing removal efficiency and nitrate uptake compared to the natural pumice. The highest removal efficiency and nitrate uptake were achieved from 300°C of heating temperatures (62.04% and 155.09 mg/g) and H2SO4 for the acid solution (83.30% and 208.25 mg/g), while by using the natural pumice only reached 57.02 % and 142.55 mg/g. The SEM images of the modified pumice confirmed the change in the surface morphology of pumice including the pore structure and surface area which can be proper sites for adsorption of pollutants. This study demonstrated that physical and chemical modification could be the potential treatment to increase the removal efficiency and nitrate uptake of the natural pumice, thus can solve the problem of groundwater pollution.