BioResources (Jan 2014)

Water-Resistant Material from Recovered Fibers and Acrylic Emulsion Terpolymer

  • Fushan Chen,
  • Haipeng Wu

DOI
https://doi.org/10.15376/biores.9.1.1148-1158
Journal volume & issue
Vol. 9, no. 1
pp. 1148 – 1158

Abstract

Read online

Styrene (SM), methyl methacrylate (MMA), and butyl acrylate (BA) were used to synthesize a polyacrylic emulsion by core-shell emulsion polymerization. The solid content of the emulsion reached 40% using reasonable reactive emulsifier contents and feeding modes. Then, the emulsion and a fiber were dispersed, coated, and dried together. Finally, fiber-based water-resistant material was successfully fabricated. The experimental results showed that under the conditions of a monomer mass ratio of 1:1:1 and a mass ratio of polyacrylic emulsion to fiber of 2:1, the Cobb value of the material reached 5.0 g/m2. The tensile strength, elongation, and breaking length were 7.4225 kN/m, 1.0%, and 11.706 km, respectively. Using scanning electron microscopy (SEM) to analyze the surface morphology and internal structure of products, the reasons for the high water resistance of fiber-based material was due to the bonding and filling effects of the polyacrylic emulsion on the fibers. For tightly bound fibers, the porous structures formed in fiber-based boards were reduced. On the other hand, the polyacrylic emulsion filled the gaps between fibers. This filling effect led to a continuous structure, and the water resistance of the material was further enhanced.

Keywords