PLoS ONE (Jan 2013)

Reconstructing the timing and dispersion routes of HIV-1 subtype B epidemics in the Caribbean and Central America: a phylogenetic story.

  • Israel Pagán,
  • Africa Holguín

DOI
https://doi.org/10.1371/journal.pone.0069218
Journal volume & issue
Vol. 8, no. 7
p. e69218

Abstract

Read online

The Caribbean and Central America are among the regions with highest HIV-1B prevalence worldwide. Despite of this high virus burden, little is known about the timing and the migration patterns of HIV-1B in these regions. Migration is one of the major processes shaping the genetic structure of virus populations. Thus, reconstruction of epidemiological network may contribute to understand HIV-1B evolution and reduce virus prevalence. We have investigated the spatio-temporal dynamics of the HIV-1B epidemic in The Caribbean and Central America using 1,610 HIV-1B partial pol sequences from 13 Caribbean and 5 Central American countries. Timing of HIV-1B introduction and virus evolutionary rates, as well as the spatial genetic structure of the HIV-1B populations and the virus migration patterns were inferred. Results revealed that in The Caribbean and Central America most of the HIV-1B variability was generated since the 80 s. At odds with previous data suggesting that Haiti was the origin of the epidemic in The Caribbean, our reconstruction indicated that the virus could have been disseminated from Puerto Rico and Antigua. These two countries connected two distinguishable migration areas corresponding to the (mainly Spanish-colonized) Easter and (mainly British-colonized) Western islands, which indicates that virus migration patterns are determined by geographical barriers and by the movement of human populations among culturally related countries. Similar factors shaped the migration of HIV-1B in Central America. The HIV-1B population was significantly structured according to the country of origin, and the genetic diversity in each country was associated with the virus prevalence in both regions, which suggests that virus populations evolve mainly through genetic drift. Thus, our work contributes to the understanding of HIV-1B evolution and dispersion pattern in the Americas, and its relationship with the geography of the area and the movements of human populations.