Results in Physics (Aug 2022)

Application of piecewise fractional differential equation to COVID-19 infection dynamics

  • Xiao-Ping Li,
  • Haifaa F. Alrihieli,
  • Ebrahem A. Algehyne,
  • Muhammad Altaf Khan,
  • Mohammad Y. Alshahrani,
  • Yasser Alraey,
  • Muhammad Bilal Riaz

Journal volume & issue
Vol. 39
p. 105685

Abstract

Read online

We proposed a new mathematical model to study the COVID-19 infection in piecewise fractional differential equations. The model was initially designed using the classical differential equations and later we extend it to the fractional case. We consider the infected cases generated at health care and formulate the model first in integer order. We extend the model into Caputo fractional differential equation and study its background mathematical results. We show that the fractional model is locally asymptotically stable when R0<1at the disease-free case. For R0≤1, we show the global asymptotical stability of the model. We consider the infected cases in Saudi Arabia and determine the parameters of the model. We show that for the real cases, the basic reproduction is R0≈1.7372. We further extend the Caputo model into piecewise stochastic fractional differential equations and discuss the procedure for its numerical simulation. Numerical simulations for the Caputo case and piecewise models are shown in detail.

Keywords