Iranian Journal of Basic Medical Sciences (Dec 2021)

Effect of transgenic Leishmania major expressing mLLO-Bax-Smac fusion gene in the apoptosis of the infected macrophages

  • Maryam Aghaei,
  • Hossein Khanahmad,
  • Akram Jalali,
  • Shahrzad Aghaei,
  • Manizheh Narimani,
  • Sayed Mohsen Hosseini,
  • Fatemeh Namdar,
  • Hossein Hejazi

DOI
https://doi.org/10.22038/ijbms.2021.56960.12701
Journal volume & issue
Vol. 24, no. 12
pp. 1666 – 1675

Abstract

Read online

Objective(s): Leishmaniasis is a complex infection against which no confirmed vaccine has been reported so far. Transgenic expression of proteins involved in macrophage apoptosis-like BAX through the parasite itself accelerates infected macrophage apoptosis and prevents Leishmania differentiation. So, in the present research, the impact of the transgenic Leishmania major including mLLO-BAX-SMAC proapoptotic proteins was assayed in macrophage apoptosis acceleration. Materials and Methods: The coding sequence mLLO-Bax-Smac was designed and integrated into the pLexyNeo2 plasmid. The designed sequence was inserted under the 18srRNA locus into the L. major genome using homologous recombination. Then, mLLO-BAX-SMAC expression was studied using the Western blot, and the transgenic parasite pathogenesis was investigated compared with wild-type L. major in vitro and also in vivo. Results: Western blot and PCR results approved mLLO-BAX-SMAC expression and proper integration of the mLLO-Bax-Smac fragment under the 18srRNA locus of L. major, respectively. The flow cytometry results revealed faster apoptosis of transgenic Leishmania-infected macrophages compared with wild-type parasite-infected macrophages. Also, the mild lesion with the less parasitic burden of the spleen was observed only in transgenic Leishmania-infected mice. The delayed progression of leishmaniasis was obtained in transgenic strain-injected mice after challenging with wild-type Leishmania. Conclusion: This study recommended transgenic L. major including mLLO-BAX-SMAC construct as a pilot model for providing a protective vaccine against leishmaniasis.

Keywords