Health and Quality of Life Outcomes (Jul 2022)
Predicting panel attrition in longitudinal HRQoL surveys during the COVID-19 pandemic in the US
Abstract
Abstract Background Online longitudinal surveys may be subject to potential biases due to sample attrition. This study was designed to identify potential predictors of attrition using a longitudinal panel survey collected during the COVID-19 pandemic. Methods Three waves of data were collected using Amazon Mechanical Turk (MTurk), an online crowd-sourced platform. For each wave, the study sample was collected by referencing a US national representative sample distribution of age, gender, and race, based on US census data. Variables included respondents’ demographics, medical history, socioeconomic status, COVID-19 experience, changes of health behavior, productivity, and health-related quality of life (HRQoL). Results were compared to pre-pandemic US norms. Measures that predicted attrition at different times of the pandemic were identified via logistic regression with stepwise selection. Results 1467 of 2734 wave 1 respondents participated in wave 2 and, 964 of 2454 wave 2 respondents participated in wave 3. Younger age group, Hispanic origin (p ≤ 0.001) and higher self-rated survey difficulty (p ≤ 0.002) consistently predicted attrition in the following wave. COVID-19 experience, employment, productivity, and limited physical activities were commonly observed variables correlated with attrition with specific measures varying by time periods. From wave 1, mental health conditions, average daily hours worked (p = 0.004), and COVID-19 impact on work productivity (p < 0.001) were associated with a higher attrition rate at wave 2, additional to the aforementioned factors. From wave 2, support of social distancing (p = 0.032), being Republican (p < 0.001), and having just enough money to make ends meet (p = 0.003) were associated with predicted attrition at wave 3. Conclusions Attrition in this longitudinal panel survey was not random. Besides commonly identified demographic factors that contribute to panel attrition, COVID-19 presented novel opportunities to address sample biases by correlating attrition with additional behavioral and HRQoL factors in a constantly evolving environment. While age, ethnicity, and survey difficulty consistently predicted attrition, other factors, such as COVID-19 experience, changes of employment, productivity, physical health, mental health, and financial situation impacted panel attrition during the pandemic at various degrees.
Keywords