Molecules (Sep 2021)
Analysis of the Structure-Function-Dynamics Relationships of GALT Enzyme and of Its Pathogenic Mutant p.Q188R: A Molecular Dynamics Simulation Study in Different Experimental Conditions
Abstract
The third step of the catabolism of galactose in mammals is catalyzed by the enzyme galactose-1-phosphate uridylyltransferase (GALT), a homodimeric enzyme with two active sites located in the proximity of the intersubunit interface. Mutations of this enzyme are associated to the rare inborn error of metabolism known as classic galactosemia; in particular, the most common mutation, associated with the most severe phenotype, is the one that replaces Gln188 in the active site of the enzyme with Arg (p.Gln188Arg). In the past, and more recently, the structural effects of this mutation were deduced on the static structure of the wild-type human enzyme; however, we feel that a dynamic view of the proteins is necessary to deeply understand their behavior and obtain tips for possible therapeutic interventions. Thus, we performed molecular dynamics simulations of both wild-type and p.Gln188Arg GALT proteins in the absence or in the presence of the substrates in different conditions of temperature. Our results suggest the importance of the intersubunit interactions for a correct activity of this enzyme and can be used as a starting point for the search of drugs able to rescue the activity of this enzyme in galactosemic patients.
Keywords