Forests (Oct 2023)

Lightweight Model Design and Compression of CRN for Trunk Borers’ Vibration Signals Enhancement

  • Xiaorong Zhao,
  • Juhu Li,
  • Huarong Zhang

DOI
https://doi.org/10.3390/f14102001
Journal volume & issue
Vol. 14, no. 10
p. 2001

Abstract

Read online

Trunk borers are among the most destructive forest pests. The larvae of some species living and feeding in the trunk, relying solely on the tree’s appearance to judge infestation is challenging. Currently, one of the most effective methods to detect the larvae of some trunk-boring beetles is by analyzing the vibration signals generated by the larvae while they feed inside the tree trunk. However, this method faces a problem: the field environment is filled with various noises that get collected alongside the vibration signals, thus affecting the accuracy of pest detection. To address this issue, vibration signal enhancement is necessary. Moreover, deploying sophisticated technology in the wild is restricted due to limited hardware resources. In this study, a lightweight vibration signal enhancement was developed using EAB (Emerald Ash Borer) and SCM (Small Carpenter Moth) as insect example. Our model combines CRN (Convolutional Recurrent Network) and Transformer. We use a multi-head mechanism instead of RNN (Recurrent Neural Network) for intra-block processing and retain inter-block RNN. Furthermore, we utilize a dynamic pruning algorithm based on sparsity to further compress the model. As a result, our model achieves excellent enhancement with just 0.34M parameters. We significantly improve the accuracy rate by utilizing the vibration signals enhanced by our model for pest detection. Our results demonstrate that our method achieves superior enhancement performance using fewer computing and storage resources, facilitating more effective use of vibration signals for pest detection.

Keywords