PLoS ONE (Jan 2013)

MicroRNA-486-3p regulates γ-globin expression in human erythroid cells by directly modulating BCL11A.

  • Valentina Lulli,
  • Paolo Romania,
  • Ornella Morsilli,
  • Paolo Cianciulli,
  • Marco Gabbianelli,
  • Ugo Testa,
  • Alessandro Giuliani,
  • Giovanna Marziali

DOI
https://doi.org/10.1371/journal.pone.0060436
Journal volume & issue
Vol. 8, no. 4
p. e60436

Abstract

Read online

MicroRNAs (miRNAs) play key roles in modulating a variety of cellular processes through repression of mRNAs target. The functional relevance of microRNAs has been proven in normal and malignant hematopoiesis. While analyzing miRNAs expression profile in unilineage serum-free liquid suspension unilineage cultures of peripheral blood CD34(+) hematopoietic progenitor cells (HPCs) through the erythroid, megakaryocytic, granulocytic and monocytic pathways, we identified miR-486-3p as mainly expressed within the erythroid lineage. We showed that miR-486-3p regulates BCL11A expression by binding to the extra-long isoform of BCL11A 3'UTR. Overexpression of miR-486-3p in erythroid cells resulted in reduced BCL11A protein levels, associated to increased expression of γ-globin gene, whereas inhibition of physiological miR-486-3p levels increased BCL11A and, consequently, reduced γ-globin expression. Thus, miR-486-3p regulating BCL11A expression might contributes to fetal hemoglobin (HbF) modulation and arise the question as to what extent this miRNA might contribute to different HbF levels observed among β-thalassemia patients. Erythroid cells, differentiated from PB CD34(+) cells of a small cohort of patients affected by major or intermedia β-thalassemia, showed miR-486-3p levels significantly higher than those observed in normal counterpart. Importantly, in these patients, miR-486-3p expression correlates with increased HbF synthesis. Thus, our data indicate that miR-486-3p might contribute to different HbF levels observed among thalassemic patients and, possibly, to the clinical severity of the disease.