World Electric Vehicle Journal (Feb 2021)
Multi-Phase Fractional-Slot PM Synchronous Machines with Enhanced Open-Circuit Fault-Tolerance: Viable Candidates for Automotive Applications
Abstract
This paper deals with the winding arrangement of multi-phase fractional-slot permanent magnet (PM) synchronous machines (FSPMSMs), with emphasis on the enhancement of their open-circuit fault-tolerance capability. FSPMSMs are reputed by their attractive intrinsic fault-tolerance capability, which increases with the number of phases. Of particular interest is the open-circuit fault-tolerance capability, which could be significantly enhanced through the parallel connection of the coils or suitable combinations of the coils of each phase. Nevertheless, such an arrangement of the armature winding is applicable to a limited set of slot-pole combinations. The present work proposes a design approach that extends the slot-pole combinations to candidates that are characterized by a star of slots including three phasors per phase and per winding period. It has the merit of improving the tolerance against open-circuit faults along with an increase in the winding factor of multi-phase machines. Special attention is paid to characterization of the coil asymmetry required for the phase parallel arrangement. A case study, aimed at a finite element analysis (FEA)-based investigation of the open-circuit fault-tolerance of a five-phase FSPMSM, is treated in order to validate the analytical prediction.
Keywords