Geophysical Research Letters (Nov 2024)
Observational Evidence of Negative Leader Reactivation Processes Following a Negative Return Stroke in Lightning Discharges
Abstract
Abstract High‐time‐resolved mapping results of two rare reactivation processes following a negative return stroke are discovered and analyzed. At first, the discharges prior to the reactivation process were dominated by positive discharges lasting for tens of milliseconds in a limited space in the vicinity of a decayed negative leader channel. The positive discharges produced no detectable electric field change. Then, negative discharges started and propagated along the decayed downward negative leader channels at a speed exceeding 106 m/s for a few microseconds and produced negative electric field changes. The analysis reveals that the processes are physically distinct from recoil leaders and side discharges in terms of propagation behaviors, electromagnetic characteristics, and time scale. The possible mechanisms of the processes are discussed. The observation suggests that the reactivation processes of the negative leaders may lead to subsequent return strokes.
Keywords