Applied Sciences (Nov 2024)
Nonlinear Vibrations of Low Pressure Turbine Bladed Disks: Tests and Simulations
Abstract
One of the most effective methods to limit the mechanical vibrations of bladed disks is the use of friction damping at mechanical joint interfaces. Unfortunately, dedicated tests to assess the impact of mistuning and the effectiveness of friction dampers are uncommon. This paper presents an original design of an academic demonstrator to perform an experimental analysis of the dynamic response of a tip-free bladed disk with under-platform dampers (UPDs), including an identification of intrinsic and contact mistuning introduced by the UPDs. The 48-blade disk was tested in a vacuum spinning rig by using permanent magnets. Vibration measurements were performed with the Blade Tip-Timing system. Tests were simulated using the Policontact tool, which predicted the average experimental nonlinear response in the presence of UPD, confirming the tool’s ability to capture the general nonlinear dynamic behavior of the mistuned bladed disk. This study presents a novel approach combining experimental Blade Tip Timing (BTT) with numerical simulations using Policontact (ver. 3.0) software and a model update based on experimental evidence to validate nonlinear dynamic responses. It distinguishes between intrinsic and contact mistuning effects, providing new insights into their impact on bladed disk vibrations. Additionally, a comparison of aluminum and steel UPDs reveals that steel offers a 26% greater damping efficiency due to its higher density and preload, significantly improving vibration reduction.
Keywords