Communications Biology (Oct 2021)

Deep representation features from DreamDIAXMBD improve the analysis of data-independent acquisition proteomics

  • Mingxuan Gao,
  • Wenxian Yang,
  • Chenxin Li,
  • Yuqing Chang,
  • Yachen Liu,
  • Qingzu He,
  • Chuan-Qi Zhong,
  • Jianwei Shuai,
  • Rongshan Yu,
  • Jiahuai Han

DOI
https://doi.org/10.1038/s42003-021-02726-6
Journal volume & issue
Vol. 4, no. 1
pp. 1 – 10

Abstract

Read online

Gao et al. report DreamDIAXMBD, a deep learning-based tool, that can extract and score chromatogram features, improving the performance of peptide-centric DIA data analysis. In contrast to the existing tools, DreamDIAXMBD demonstrates higher numbers of precursor identifications and accurate quantification in public test data sets.