Molecular Plant-Microbe Interactions (Jul 2012)

The Molecular Basis of Host Specialization in Bean Pathovars of Pseudomonas syringae

  • David A. Baltrus,
  • Marc T. Nishimura,
  • Kevin M. Dougherty,
  • Surojit Biswas,
  • M. Shahid Mukhtar,
  • Joana Vicente,
  • Eric B. Holub,
  • Jeffery L. Dangl

DOI
https://doi.org/10.1094/MPMI-08-11-0218
Journal volume & issue
Vol. 25, no. 7
pp. 877 – 888

Abstract

Read online

Biotrophic phytopathogens are typically limited to their adapted host range. In recent decades, investigations have teased apart the general molecular basis of intraspecific variation for innate immunity of plants, typically involving receptor proteins that enable perception of pathogen-associated molecular patterns or avirulence elicitors from the pathogen as triggers for defense induction. However, general consensus concerning evolutionary and molecular factors that alter host range across closely related phytopathogen isolates has been more elusive. Here, through genome comparisons and genetic manipulations, we investigate the underlying mechanisms that structure host range across closely related strains of Pseudomonas syringae isolated from different legume hosts. Although type III secretion-independent virulence factors are conserved across these three strains, we find that the presence of two genes encoding type III effectors (hopC1 and hopM1) and the absence of another (avrB2) potentially contribute to host range differences between pathovars glycinea and phaseolicola. These findings reinforce the idea that a complex genetic basis underlies host range evolution in plant pathogens. This complexity is present even in host–microbe interactions featuring relatively little divergence among both hosts and their adapted pathogens.