Poultry Science (Sep 2024)
Further screening of SNP loci of eggshell translucency related genes and evaluation of genetic effects
Abstract
ABSTRACT: Eggshell translucency is a widespread issue in the field of egg quality. Previous research has established that the heritability of eggshell translucency is relatively low or moderate. Scientists have also successfully identified SNP loci related to eggshell translucency on different chromosomes by using gene chips and single-variant GWAS. However, the specific impact of single or multiple genes on the trait of eggshell translucency remains unknown. In an effort to investigate this, we examined 170 SNPs associated with eggshell translucency obtained by our research group. We selected 966 half-sibling laying hens from 2 generations in 3 pure lines: Dwarf Layer-White, Rhode Island Red-White Strain, and Rhode Island Red. Eggs were collected from each hen over a period of 5 consecutive days, and eggshell translucency was measured using a grading method in which the hens were divided into 2 groups: an opaque group and a translucent group. We collected blood samples from the laying hens and extracted DNA. Time of flight mass spectrometry (TOF-MS) was used for genotyping to identify SNP loci that influence the trait of eggshell translucency. The results of our analysis revealed that using TOF-MS in 3 chicken strains, we were able to eliminate loci with low gene polymorphism, genetic effect contribution less than 1%, and deviation from Hardy-Weinberg equilibrium. Ultimately, 5 SNPs (Affx-50362599, rs15050262, rs312943734, rs316121113, and rs317389181) were identified on chromosomes 1, 5, and 19. Additionally, nine candidate genes (DCN, BTG1, ZFP92, POU2F1, NUCB2, FTL, GGNBP2, ACACA, and TADA2A) were found to be associated with these SNPs. No linkage disequilibrium relationship was observed between the 2 pairs of SNP loci on chromosomes 1 and 19. Based on previous studies on the formation mechanism of eggshell translucency, we hypothesize that NUCB2, FTL, and ACACA genes may be affecting the eggshell structure through different mechanisms, such as increase the water permeability or make thin of eggshell membrane, which promote moisture or part of other egg contents and ultimately lead to the formation of eggshell translucency. These findings validate and identify five SNP loci that regulate the translucency trait, and provide molecular markers for breeding non-translucent populations. Furthermore, this study serves as a reference for further investigation of the genetic regulatory mechanisms underlying eggshell translucency.