Majallah-i Dānishgāh-i ’Ulūm-i Pizishkī-i Shahīd Ṣadūqī Yazd (Jan 2017)

New Approach for the Synthesis, Entrapment of Hydrophilic Drugs and Evaluation of Physico-Chemical Characteristics of PH-sensitive Nano-Liposome: Improving Therapeutic Efficacy of Doxorubicin in Order to Treatment Bone Tumor and Reducing the Side Effects of Doxorubicin

  • Fa Haghiralsadat,
  • Gh Amoabediny,
  • MH Sheikhha,
  • J Mohammad nezhad,
  • S Naderinezhad,
  • Z Malaei-Balasi,
  • B Zandieh Doulabi

Journal volume & issue
Vol. 24, no. 10
pp. 780 – 789

Abstract

Read online

Introduction: Cancer is one of the most harmful disease throughout the world. Doxorubicin is an anti-cancer agent, used in the treatment of various types of the cancer such as bone cancer. There are several adverse effects related to clinical usage of Doxorubicin for long time. The present study aimed to investigate the reducing side effects and enhancing the therapeutic effect by liposomal carrier. Methods: Liposomes containing DPPG and cholesterol with the molar ratio of 70:30 with the Doxorubicin were synthesized by pH- gradient method. The average diameter of nanoparticles and surface charge was determined by Zeta-Sizer instrument. The amount of drug loaded and drug-released was determined using dialysis. The surface morphology and internal lamella was evaluated by TEM and SEM. Results: The average size of liposomal Doxorubicin obtained using Zeta-Sizer was 126 nm. The encapsulation efficacy of liposomal Doxorubicin was 89%. The total amount of drug release during 48 hours in acidic medium studied by dialysis technique was 46%. Conclusion: In this study, investigation of loading Doxorubicin into nano-liposome with the slow- released kinetic was carried out to improve the solubility and bioavailability of Doxorubicin in order to delivery to osteosarcoma cell line.

Keywords