Ultrasonography (Apr 2022)

Transcutaneous application of ultrasound enhances the effects of finasteride in a murine model of androgenic alopecia

  • Jaeho Kim,
  • Hyun-Chul Kim,
  • Kavin Kowsari,
  • Kyungho Yoon,
  • Seung-Schik Yoo

DOI
https://doi.org/10.14366/usg.21186
Journal volume & issue
Vol. 41, no. 2
pp. 382 – 393

Abstract

Read online

Purpose The purpose of this study was to evaluate if transcutaneous application of low-intensity ultrasound can locally enhance the effects of finasteride on hair growth in a murine model of androgenic alopecia (AA). Methods AA mice (injected twice per week with testosterone enanthate, n=11), under daily oral administration of finasteride, received 1-MHz ultrasound for 1 hour at the unilateral thigh area five times per week for 5 weeks. Non-thermal and non-cavitational ultrasound was delivered in a pulsed manner (55-ms pulse duration with a repetition frequency of 4 Hz). Skin temperature was measured during sonication, and the measurements were validated with numerical simulations of sonication-induced tissue temperature changes. Hair growth was assessed both photographically and histologically. Results We found more hair growth on the sonicated thigh area than on the unsonicated thigh, beginning from week 3 through the end of the experiment. Histological analyses showed that the number of hair follicles doubled in the skin sections that received sonication compared to the unsonicated zone, with thicker follicular diameter and skin. An over five-fold increase was also observed in the anagen/telogen ratio in the sonicated area, suggesting an enhanced anagen phase. Skin temperature was unaltered by the administered sonication. Conclusion The findings of the present study suggest that pulsed application of ultrasound promotes hair growth, potentially by disrupting the binding of albumin to finasteride. This may suggest further applications to enhance the pharmacological effects of other relevant drugs exhibiting high plasma protein binding.

Keywords