Crystals (Aug 2019)

Lossy Mode Resonance-Based Glucose Sensor with High-κ Dielectric Film

  • Yu-Cheng Lin,
  • Liang-Yu Chen,
  • Fu-Chien Chiu

DOI
https://doi.org/10.3390/cryst9090450
Journal volume & issue
Vol. 9, no. 9
p. 450

Abstract

Read online

In the past, high-κ dielectrics gained much attention because of the constant demand for increasingly smaller semiconductors. At the same time, in the field of optical sensing, high-κ dielectrics are key materials. This study presents the experimental investigations on a lossy mode resonance-based optical planar waveguide (LMROPW) sensor coated with a high-κdielectric of an indium tin oxide (ITO) layer. Two types of sensing structures were fabricated by coating (i) only a single-layer ITO (or bared LMROPW) and (ii) an ITO layer with glucose probes onto the optical planar waveguide (or boronic LMROPW) to detect glucose molecules. The sensing characteristics of these two types of sensors toward the surrounding analyte were determined using different concentrations of glucose solutions. It was found that the bared LMROPW sensor is only suitable for a higher concentration of glucose; the boronic LMROPW sensor with glucose probes on ITO could be applied to a lower-concentration solution to monitor glucose adsorption onto the sensing surface. Furthermore, with the advantages of a simple structure, easy alignment, and suitable production, the LMROPW sensor with a high-κ dielectric surface could be applied in clinical testing and diagnostics.

Keywords